

ALANINE

	A white,odorless,crystalline powder having a sweetish taste. It is freely soluble in water, sparingly soluble in a alcohol, and insoluble in enter. The PH of 1 in 20 solution is between 5.5 and 7.0.	
	Chemical Name	S-2-Amino Propionic Acid
	Molecular Formula	$C_3H_7NO_2$
	Structural Formula	
	Molecular Weight	89.09
	Assay(of C ₃ H ₇ NO ₂)	98.5%-101.0%
SPECIFICATION (FCCIV,1996)	Specific Rotation (after drying)	+13.2~+15.2
	Lead	10ppm Max
	Heavy Metal(as Pb)	0.002% Max
	Loss on Drying	0.3% Max
	Residue of Ignition	0.2% Max
Main Function and Purpose	L(+)-Alanine is widely used in pharmaceutical,food and chemical fields.For example,it can be used as food additive, health care cosmetics and so on.L(+)-alanine is a important raw material of VB6 production.14 amino acid injection 800,a kind of compound amino acid injection,is a new medicine to treat liver and brain diseases.It can treat amino acid metabolism turbulence caused by liver dysfunction,and can make the patient of hepatic coma regain consciousness.It is also a very good medicine for diuresis treatment.	
Packing	25KG net in Kraft/Plastic Bag lined with PE bag or accordingto customer requirement.	
STORAGE	Kept airtightly in a light-proof, dry and cool place.	